Remaining Useful Life Prediction for Rolling Element Bearing Based on Ensemble Learning
نویسندگان
چکیده
Information fusion is becoming state-of-the-art methodology for performance assessment of engineering assets. Efficiently and smartly combining multi-source information and relevant models from the interested object, more accurate and reliable diagnostic and prognostic results regarding the object can be achieved, which are especially significant for the condition-based maintenance and prognostics and health management applications. Ensemble learning, as a typical machine learning and decision fusion method, has long been applied in the pattern recognition field and demonstrated promising performance. However, scarce applications of ensemble learning have been found for remaining useful life (RUL) predictions. RUL prediction based on ensemble learning by merging multi-piece information and dynamically updating is proposed in this paper. Specifically, multiple base learners are trained to work as one RUL estimator and weighted averaging with dynamically updated weights upon the latest condition monitoring information is employed to aggregate these RULs to form the final RUL. Rolling element bearing degradation experimental data is used to verify and validate the effectiveness of the proposed method.
منابع مشابه
Remaining Useful Life Prediction of Rolling Element Bearings Based On Health State Assessment
Remaining useful life (RUL) prediction is one of key technologies to realize prognostics and health management that is being widely applied in many industrial systems to ensure high system availability over their life cycles. The present work proposes a data-driven method of RUL prediction based on multiple health state assessment for rolling element bearings. Instead of finding a unique RUL pr...
متن کاملNew Particle Filter Based on GA for Equipment Remaining Useful Life Prediction
Remaining useful life (RUL) prediction of equipment has important significance for guaranteeing production efficiency, reducing maintenance cost, and improving plant safety. This paper proposes a novel method based on an new particle filter (PF) for predicting equipment RUL. Genetic algorithm (GA) is employed to improve the particle leanness problem that arises in traditional PF algorithms, and...
متن کاملResearch on bearing life prediction based on support vector machine and its application
Life prediction of rolling element bearing is the urgent demand in engineering practice, and the effective life prediction technique is beneficial to predictive maintenance. Support vector machine (SVM) is a novel machine learning method based on statistical learning theory, and is of advantage in prediction. This paper develops SVM-based model for bearing life prediction. The inputs of the mod...
متن کاملUsing Deep Learning Based Approaches for Bearing Remaining Useful Life Prediction
Traditional data driven prognostics requires establishing explicit model equations and much prior knowledge about signal processing techniques and prognostic expertise, and therefore is limited in the age of big data. This paper presents a deep learning based approach for bearing remaining useful life (RUL) prediction with big data. This approach has the ability to automatically extract importa...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کامل